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On the basis of many experiments and theoretical reflections, the authors showed
eariier that the courses of non-isothermal analytical curves are strongiy influenced by
the experimental conditions, and therefore the sense of kinetic parameters calculated
from these curves is fictitious and their determination is uncertain.

In the present work some further problems of this question are discussed. It was
found that with combinations of strongly differing parameters nearly identical TG
curves can be produced, and this situation cannot be improved even by orthogonal
polynomial transformation. Further integral methods, using linearization, the esti-
mation of the parameters is poor.

The model transformed according to the conditions of the quasi-isothermal — quasi-
isobaric technique leads to contradictions, unambiguously showing the correlation
existing between the parameters.

The view that the parameters A4, E and n of the Arrhenius relation can reliably be
calculated from thermoanalytical curves has now persisted for more than two
decades, in spite of the fact that the practical application of the calculation method
involves many difficulties. Thermoanalysts have therefore tried to develop various
new calculation methods, or to apply corrections to the earlier methods in order to
eliminate the obstacles [1 —41]. The great number of these researchers itself implies
admission of the errors, and has given rise to certain criticism [42— 55). However
the struggle has not been given up. As a concession the fiction of “formal’ kinetics
was born, which attributed to kinetic parameters not a real but some fictitious
sense.

Information content of conventional
thermoanalytical curves

The contradictions connected with this question can be studied in Fig. 1 and
Table 1. Every curve of the Figure represents the decomposition of calcium carbo-
nate. The differences between the courses of the individual curves are due to the
various experimental conditions. Especially conspicnous are the differences between
the shapes of curves traced under dynamic (curves 1— 8) and under quasi-isother-
mal— quasi-isobaric conditions (curves 9— 12).
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Fig. 1. TG curves of calcium carbonate, traced by using various heating rates, sample amounts

and sample holders. Curves 1— 4: dynamic heating rate 2.5°/min; 50 mg CaCO,; curves 5—8:

dynamic heating rate 10°/min; 250 mg CaCO,; curves 9—12: quasi-isothermal heating,

0.5 mg/min (58); 250 mg CaCOy; curves 1, 5, 9: multiplate sample holder (60); curves 2, 6,

10: uncovered crucible (60); curves 3, 7, 11: covered crucible; curves 4, 8, 12: labyrinth
crucible (58)

Table 1 contains the parameters computed from curves 1—8 with four different
methods of kinetic calculation. These values show big variations, depending on
both the experimental conditions and the calculation methods, despite the fact that
each of them represents the very same simple decomposition reaction.

In the knowledge of this contradiction, we earlier [56 — 58] considered it doubtful
that it is possible to draw unambiguous and useful conclusions regarding the kinet-
ics of reactions from the courses of conventional thermoanalytical curves.

We examined the correlations between the shapes of thermoanalytical curves and
the mechanisms of the elementary chemical and physical processes (Table 2) oc-
curring. Our investigations convinced us that, under the conditions of dynamic
thermoanalytical examinations, the course of the transformation is not defined by
the chemical reaction itself taking place on the phase boundary (Table 2, b), but by
the elementary physical processes slower by several orders of magnitude, i.e. the
experimental conditions which influence these processes. Of these, gas and heat
transports play the most important roles (Table 2, ¢). Accordingly, the courses of
the thermoanalytical curves are characteristic rather of the experimental conditions
than of the reaction examined.

Experience shows that powdered material of poor thermal conductivity is not
able to take up instantaneously from its surroundings the heat necessary for the
progress of the transformation. Consequently, the progress of conversion is con-
trolled in most cases by the heat transport, this being the slowest of the processes.

The difference in the courses of curves 8 and 12 in Fig. 1 serves as proof of this.
Under the experimental conditions of the graph, there was a difference only in the
rate of heat absorption amounting to about two orders of magnitude.
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Table 1
Kinetic parameters (n, E, A) calculated with different methods on the basis of the curves shown
in Fig. 1
1 -
TG curve Kissinger Freg;z;gF - Hﬁ:&;t;_ Zsaké
Sample holder in Fig. 1.
n n E n ' E n ] E ‘ A
Polyplate 0.7 0.0 0.5 1.0
1 124 114 90
2 . 1014
0.5 1.5 0.3 2.0 |
5 71 78 I 68
2 - 1014
Pt crucible 0.5 1.6 0.3 10
‘ 2 69 78 70
3 . 1014
} 0.5 2.0 0.2 1.0
j, 6 87 92 72
! 7 - 1013
Ptcrucible 0.5 1.0 .03 0.5
with cover ; 3 80 i 54
) ! 2 ]010
0.6 0.8 0.3 0.5
7 72 80 52
2 - 10°
Labyrinth 1.0 0.0 0.7 0.0
crucible 4 61 99 66
5 - 1018
1.0 0.4 0.8 0.0
8 209 162 106
‘ 2 - 1018

It is also easy to see that in the case of reactions leading to equilibrium the prog-
ress of the dissociation is fundamentally influenced by the continuous and uncon-
trollable changes in the concentration of the gaseous decomposition products in
contact with the solid material [59], and by the experimental conditions influencing
the above changes.

The magnitude of this effect can be judged from the difference in the courses of
curves 6 and 8 in Fig. 1. In the case of curve 6 the concentration of the gaseous de-
composition products in the vicinity of the sample continuously changed, while it
remained constant during the whole time when curve 8 was recorded.

The course of the transformation can be further modified among others by
nucleus formation and nucleus growth, as well as by recrystallization processes
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Table 2

Elementary chemical and physical processes playing a part in thermal decomposition
reactions leadng to equilibrium

' Partial processes of thermal decomposition reaction of type:

| ABy & A + B

-

- Relation between the
Evolution of ga- rate of the partial
seous products process and the
| heating program
release = return a)apphed
of gas molecules quicker, therefore
from or to the c
lattice, respec- pot rate-determin-
tively g
I
chemisorption &
desorption of the
i gas molecules at
| the interface i
I
| . | | b)
Departure of gas- Formatlgn of Heat transfer comparable, there-
eous ‘pro.ducts new solid phase fore may be rate-
by dlﬁiusmn determining
‘ through the cap- Nucleus forma- between
| illaries of the tion || surface 2 centre
. grain, between | of a single grain
| interface = grain [
‘ boundary | Growth of nu-
cleus
I
Recrystallization
\ | o
through the space ‘ between l slower, therefore in
unfilled with surface = centre most cases rate-
grain, between | | of the sample ‘ determining
grain boundary |
= sample surface
between
| ‘ furnace = sample
in the sample hold-| surface
er between sam-
ple surface = sur- }
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influencing the porosity of the new phase and the diffusion rate of the gaseous de-
composition products (Table 2).

For the sake of completeness it is to be noted that the mechanism of the partial
processes cannot actually be surveyed at all, because with the progress of the con-
version the phase boundary continuously migrates from the direction of the grain
surface towards the centre and as a consequence the conditions of mass and heat
transport continuously change.

Information content of quasi-isothermal-quasi-isobaric
TG curves (Q-TG)

The question arises as to what kind of information regarding the kinetics of the
reactions may be obtained from Q-TG curves traced with the quasi-isotnermal--
quasi-isobaric technique [56 —58].

The point of the quasi-isothermal heating technique lies in the condition that the
heating regulator system establishes a difference between the furnace and sample
temperatures such that the transformation should take place at a very low and
strictly constant rate, selected in advance. It is experienced in such cases that no
temperature drop occurs within the sample, and there is sufficient time for the up-
take of the heat amount necessary for the conversion.

Due to the constant decomposition rate, the partial pressure of the gaseous de-
composition products in contact with the solid phase (Fig. 1, curves 9—12) also
remains constant (quasi-isobaric). This is especially valid when the labyrinth
sample holder is used, in which a “self-generated” atmosphere is formed immediately
at the beginning of the transformation and the 1 atm partial pressure of the gaseous
decomposition products stays constant until the end of the conversion (curve 12).

The temperature of the sample becomes spontaneously adjusted to the value at
which the rate of the transformation may remain constant. In the case of reactions
leading to equilibrium, this temperature corresponds to the instantaneous state of
equilibrium defined by the concentration of the gaseousdecomposition products too
(Fig. 1, curves 1 —12).

In reactions not leading to equilibrium (Fig. 2, curve b), the temperature of the
sample is established independently of the concentration of the gaseous decomposi-
tion products.

The Q-TG curve, recorded as a function of this temperature, changing in a spe-
cial way, yields other information regarding the kinetics of the transformation than
does the conventional TG curve. Two basic types of Q-TG curves can be distin-
guished.

The conversion takes place according to zero order if the course of the Q-TG
curve is similar to that of curve @ in Fig. 2. In such cases the progress of the trans-
formation is governed by the heat transport, this being the slowest process. The
chemical reaction occurring at the phase boundary (Table 1, ) is too rapid to be
able to exert any influence upon the course of the transformation. It has been found

J. Thermal Anal. 17, 1979



512 ARNOLD et al.: PROBLEMS OF THE CHARACTERIZATION

iyl
Catoy _ 2 Fe032H,0 % T
.

_____ 4] S —_—— 2T

ol A\

| — il ] -
163 370 670 o

Temperature, K Temperature,K

Fig. 2. Two basic types of thermogravimetric curves traced under quasi-isothermal and quasi-
isobaric conditions (Q-TG); a) zero-order transformation, b) not zero-order transformation

that the simple dissociation reactions of inorganic compounds leading to equil-
ibrium occur in this way.

Curve b in Fig. 2 illustrates transformations which do not take place according to
zero order, and in which the chemical reaction itself is often the slowest process,
defining the course of the conversion. This kind of Q-TG curve may be obtained in
reactions of inorganic and organic compounds not leading to equilibrium, or if
consecutive and overlapping reactions are taking place, or if the reaction becomes
diffusion-controlled due to the formation of a compact new phase which is hard to
cross for the gaseous decomposition products.

Preliminary conclusion

In accordance with the above, kinetic calculations, performed on the basis of
thermoanalytical curves traced under dynamic heating conditions, yielded very little
information concerning the kinetics of the reactions examined.

Therefore, in our opinion the Arrhenius equation, being taken from homoge-
neous kinetics, cannot be applied to non-isothermal heterogeneous reactions, since
the conditions of the Arrhenius equation are not fulfilled under the circumstances
of these latter ones. In these cases the model of transport theory must be taken into
consideration.

Tt was also demonstrated how much the courses of the curves are influenced by
the experimental conditions. Therefore, even in the case of the strictest standardiza-
tion of the experimental conditions, the curves obtained in parallel examinations
would run in a domain of varying width.
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The reliability of kinetic calculations becomes even more questionable if we raise
the question of one-to-one correspondence between the ternary parameter system
(A, E, n) and the TG curve. We decided, therefore, to perform a critical study of
the mathematical bases of the kinetic calculations. We wish to report on the results
of our examinations in the present and subsequent papers.

The TG curve as solution curve of the Arrhenius differential equation

We selected as the subject of our research those reaction Kinetic calculations
which are based on the data of TG curves. We did this because, of all the thermal
effects, the weight changes of the sample demonstrate most truly the progress of the
conversion, and there exists a strict numerical correlation between weight changes
and progress not as in the case of DTA or DSC measurements.

For the determination of kinetic parameters of reactions involving weight
changes, the TG curve can be studied on the basis of the following considera-
tions:

d a(z)
dt

= k" f()) )

where « is the reaction coordinate, k the constant of reaction rate, and ¢ the time.
In reactions with weight changes the reaction coordinate is the weight fraction of

the converted material:

My — m

my — m,
where m, is the initial, m the actual, and m, the final amount of the material.
Accordingly,

O0<a(t) <1
and o¢(0) = 0 anda(t,) = 1

where ¢, is the time when the process is completed. The usual form of function

f@) is
f@®) = (I = oAn))" 3)

where n is the reaction order.

It is to be noted that many relationships are known for the type of the function
J(@), depending on the rate-determining thermal process. We performed our exami-
nations with form (3).

According to Arrhenius, the reaction rate is defined by the absolute temperature
(T) and the activation energy (E):

E

KI)y=A-e * @

where A is the pre-exponential factor, R the universal gas constant and E the activa-
tion energy.
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With the application of Eqs (1), (3) and (4) we obtain the following differential
equation
do(r)
dr

= A - exp (—E/RT()) * (1 — «(D))" 5)
Defining the linear heating program,

dr
T=T0+E"I=TO+G'Z‘ (6)

where T, is the initial temperature (K) and G the heating rate (°/min), we obtain

do(T) A e
7 ¢ exp (—E/RT) " (1 — a(T))™* D
This separable differential equation can be integrated after separation of the vari-
ables.

The aim of mathematical examinations

We can by no means be satisfied with the fact that many arguments have clearly
shown that relation (5) generally cannot be regarded as the real physicochemical
model of the process examined (Fig. 1, Table 1).

In order to be able to clarify the problem one has to make investigations in two
important directions. On the one hand, it is necessary, on the basis of thorough
thermodynamic and operational examinations of thermal processes, to try to
establish a theoretical model containing the physical and chemical transport proc-
esses together. However this task still requires much research work.

On the other hand, it seems necessary to find out the actual reliability of applica-
tion of the widely-used relation (5), generally regarded only as an apparent model,
to thermoanalytical problems. This is in fact the aim of our work.

For the determination of the validity of Eq. (5), regarded as an empirical model,
we carried out examinations in several directions.

First, we performed mathematical examinations in order to find out whether,
by any appropriate transformation of the TG curve, we could obtain features which
are in univocal connection with the apparent kinetic parameters, their application
at the same time serving for the better estimation of the parameters. Figure 3 dem-
onstrates the routes of these calculations. While part “a” of the Figure illustrates
the conventional method of determining the parameters, part “5”” shows the way of
searching for transformation in order to find features for the better estimation of
the apparent kinetic parameters.

* Here the fundamental problem cf relation (7) should be emphasized, viz. that the
equation is valid only if the temperature of the sample increases in a strictly linear way. It is
however well-known that this condition can never totally be fulfilled under dynamic heating
conditions.
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Fig. 3. Conventional (a) and present (b) method of estimation of kinetic parameters

As regards the transformations, in our present paper we wish to report on the
application of orthogonal polynomials, while the results of the application of mo-
ments, the Karhunen-Loeve transformation and other mappings will be described
in the following parts of the series.

We performed further mathematical examinations with regard to the reliability
of the estimation of the apparent kinetic parameters, in order to establish the appli-
cability of model (5) to thermoanalytical measurements.

In connection with this field, in our present paper we deal with the examination
of the widely-used technique of estimation with the integrated method of the linear-
ized form of the model. In the following papers of the series the problems of vari-
able transformations and non-linear estimation will be discussed.

We think that, as regards the applicability of the model, a very important task is
to examine the model under special experimental conditions. Therefore, we studied
the question of what conclusions can be drawn from the application of the model
under the conditions of quasi-isothermal-quasi-isobaric measurements. This
problem will also be discussed in detail within the framework of this series.

Application of transformations: orthogonal polynomials

It is a well-known fact that the combinations of various and different parameters
yield nearly the same TG curve [21]. These simulation experiments mean that
model (5) or (7) is not sensitive to changes in certain parameters. For demonstration
of the connection existing between the shape of the curve and the changes in the
model parameters, we constructed a series of TG curves with the help of model (7),
i.e. with its parameters, which changed between the limits of physical reality (Fig. 4).
The data concerning the simulation of the curve series are given in Appendix I.
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Fig. 4. Influence of changes in the n, E and A parameter values on the courses of TG curves:
ayn=20.1,03,06,0.,9 1.2 1.5, 1.8, 2.1 and 2.4 in the sequence of curves 1—9, E = 40,
A = 10%; b) E= 25, 35, 45 and 55 in the sequence of curves 1—4, n = 1.05, 4 = 10'¢;
c) A = 10, 1012, 104, 106, 10*® and 102 in the sequence of curves 1—6, E = 40, n = 1.05.

The simulation examinations clearly demonstrate the well-known compensation
effect, i.e. the correlation between the parameters 4 and E.

We tried to find out whether, in the application of orthogonal polynomials, their
coefficients are sensitive to changes in the parameters or not. If there are polynomial
coeflicients sensitive to changes in the parameters, then from the coefficients deter-
mined on the basis of the real TG curve one can draw conclusions regarding the
parameters.

For the clarification of this problem we proved first that a TG curve described by
a finite number of discrete values can be constructed with given accuracy with an
orthogonal polynomial of m-th degree, i.e. there is a one-to-one correspondence
between the TG curve and the coefficients of orthogonal polynomials of m-th
degree. Appendix I contains these proofs.

In accordance with the description in Appendix 111 we produced an orthogonal
polynomial system and fitted it to the numerically simulated TG curves as described
in Appendix IV. We depicted graphically the changes in the first six coefficients as
functions of the individual kinetic parameters (Figs 5—7).

These examinations showed that the changes of the pre-exponential factor (4)
in the domain examined were not reflected in the changes of the coefficients of the
polynomial systems. With variation of the activation energy (E), little effect can be
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observed only in the 24— 35 kcal/mole domain. Only the reaction order has an
effect which can be detected univocally.

For the thermoanalytical interpretation of the above results let us use the well-
known concept: Two TG curves (TG, and TG,) are different if the (4,, E;, n;) #
# (45, E,, ny) inequality is valid. Two curves are identical if their reaction kinetic
parameters are equal.

The basis of reaction kinetic calculations is the conviction that only one param-
eter triplet belongs to a given TG curve, and only one curve belongs to a given
triplet of parameters.

In the course of calculations it turned out that, though theoretically there exists a
one-to-one correspondence between a given simulated TG curve and the coefficients
of its approximating orthogonal polynomial system, and consequently various

e A,01570° L= £ kel /mole
-2~ N -2

i EA ............. ] '\'.‘_ R

‘ )] " b)

Fig. 5. Variation of the coefficients of the Legendre polynomials: a) with the pre-exponential
factor; b) with the activation energy; ¢) with the reaction order

A
= 2
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T et (5
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- A,01x10*
2l _2
L L | S
~. S,
b ——— P N g ;
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\ a) Y b) Y o

Fig. 6. Variation of the coefficients of the Tchebichef polynomials: a) with the pre-exponential
factor; b) with the activation energy; ¢) with the reaction order
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a Y ‘ b) Y <)

Fig. 7. Variation of the coefficients of the Gegenbauer polynomials:a) with the pre-exponential
factor; b) with the activation energy; ¢) with the reaction order

coefficients belong to various TG curves, several different TG curves do not belong
to the same coefficients.

The coefficients of the orthogonal polynomial system approximating the various
TG curves, made by changing the pre-exponential factor and the activation energy,
are insensitive towards these changes. This means that TG curves represented by
orthogonal polynomials are not of different shapes, i.e. they do not correspond to
the different £ and A parameters.

Hence, this transformation does not yield features which would improve the esti-
mation of kinetic parameters. Furthermore, the results of this examination seem to
support indirectly the fact that the increase of E shifts the TG curve solely in the
direction of increasing temperature, and the increase of 4 only in the direction of
decreasing temperature ranges (Fig. 4). Hence, in the knowledge of the temperature
interval of the TG curve, only some kind of product-like connection between A and
E can be obtained. Accordingly, from a TG curve traced under the conditions of a
single dynamic heating program the estimation of 4 and E is poor and so the esti-
mated parameter values can hardly be used by the thermoanalyst for characteriza-
tion of processes and materials.

The reliability of parameter estimation

We also examined the reliability of the estimation of reaction kinetic parameters
for the case when the parameters are estimated by the least squares method using
integrating method of the linearized form of model (7).

The reliability of the parameter estimation may be characterized by examination
of the coefficient matrix of the linear equation system of three unknowns, obtained

J. Thermal Anal. 17, 1979



ARNOLD et al.: PROBLEMS OF THE CHARACTERIZATION 519

by partial derivation according to the least squares method. Let us write again the
equation

dz;T) = A* + exp (—E/RT) (1 ~ oT))" ®)
where o 4
A* = e
the logarithmic form of which is
do .
In— =mA4*—ERT+n-In(l —a). ®
dTr
By using this for the related values (Ti, o, d_;’l) measured, we estimate values
E, In A* and n with the method of least squares: A
N do: 2
F = Z[ln*d—Ti—lnA*+E/RTi—n'In(1—cxi)] . (10
i=1 i

By making the partial derivatives zero, let us find the minimum of the above func-
tion:
oF oF OoF
0; =0

dlnAd* ° E * on
This means:

[m j"; —nA* 4+ ERT,~n-In (1l —a)|=0

L=

dey ]
[111 d;‘j —InA* + E/RT; — n-In(l — a)| - =0 (11y

i

M=

RT;

l

dow
[ln d;"l —InA* + E/[RT; —n-In(1 — o) [In(1 — o) = 0.

i

RN

i

Let us introduce the following symbols and rearrange the equation:

1
In A* = B; n(l — o) = b; Y
i Lid-a) Y @y =/
do, 1 1 do;

1 L= ¢ —In( - ) =4d; . L — g
; ndTi c; ;RTi n(l — a) ; ;‘RTi In ar, = % 12y
Z—l—=a' Y In*(1 —a) = e YIn(l—a)-l dos
N ERER e e i A
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This assumes the following matrix form:

N —-a b B c
—a f =d| " |E|=]|—-yg (13)
b —-d e n h

The problem given above is:
A'x=y

where A is the coefficient matrix, x the vector of the parameters [x* = (B, E, n)]
to be determined, and y the vector [y* = (¢, —g, #)] obtained from the measured
values.

We obtain the accuracy of the solution of the equation system from the following
expression:

HAXH A A—l ’HAyH
= : : 14
The product |[[A[| - ||A™"|| may give information regarding the measure of the

relative uncertainty of the solution. This product is called the condition number
(cond(A)) of the equation system. If it is large then the solution is unreliable. For
example, if cond(A) is of the order of magnitude of 10°, then we have to know
vector y, consisting of the values measured, with an accuracy of 0.0001 9; to be able
to obtain a 10%, accuracy of the solution.

d
With the application of the related values [Ti, o, d—]: of the TG curves computed

1
earlier by simulation, we took the above linear equation system, determined the
solution and examined the condition number of the coefficient matrix.

The values obtained show that the condition number of the linear equation sys-
tem lies between 3 - 10* and 3.5 - 10°, demonstrating that the estimation of the
parameter values is rather poor. As a conclusion, we may state that on the basis of
a single TG curve traced under dynamic heating conditions the reaction kinetic

parameters cannot be properly estimated and univocally calculated.

Estimation of kinetic parameters in the case of the
quasi-isothermal-quasi-isobaric measuring technique

a) Processes taking place at constant temperature

In the knowledge of the above discussion, let us consider the TG curve of CaCOj,
recorded by the quasi-isothermal-quasi-isobaric measuring technique (Fig. 3a).

1t can be seen that after the process has started the system sets into a constant
temperature and maintains this until the decomposition is completed.
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Let us apply the following wide-spread equation for this case, too:

do(?)
dt

= A - exp (—E/RT(®)) (1—a(D)". (15)

Since the quasi-isothermal-quasi-isobaric measuring technique ensures a con-
stant decomposition rate, it can be assumed that during the full time period of the
decomposition the following is valid:

doz)
dt

= C (constant)

As the thermal curve shows, the T value is also constant in the course of the
decomposition (' = T;). Accordingly, Eq. (15) changes as follows:

C =4 exp(—ERT) (1 — at))" (16)

As off) varies between 0 and 1, the above product can only be constant if each
member of it is constant, since the parameters £ and 4 are supposed not to vary
in the course of one decomposition process. However, this is possible only if
(1—o)" = 1, and this identity can be valid only if # = 0, which means that the
order of the kinetics is equal to 0, without physical meaning. If physical-chemical
meaning can be attributed to the above model, the physical process (mass transport,
heat transport) is covered by the chemical one, which is orders of magnitude more
rapid.

In such cases it is senseless to speak about the interpretation of the reaction kinet-
ic parameters, since these parameters can be characteristic only of the physical con-
ditions of the process. A further counter argument against the application of the
Arrhenius equation to this case is that under quasi isothermal circumstances the
boundary conditions, set up originally by Arrhenius, are not fulfilled.

Let us examine the problem further. As (1—a)" = 1, it is true that

C = A4 - exp (—E/RT)
or (17)

C = eln A—E|RT,

From this one can unambiguously conclude that

In A—E/RT, = constant.

On the above basis it can be stated that, in the case of zero-order processes, from
a single curve recorded by the quasi-isothermal-quasi-isobaric measuring techni-
que, the values of 4 and E themselves can not be determined, but only their rela-
tionship.

J. Thermal Anal. 17, 1979
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b) Processes taking place at varying temperatures

Let us examine the question further in the case of processes taking place at
varying temperatures, recorded by the quasi-isothermal-quasi-isobaric measuring
technique. See curve of Fe(OH), (Fig. 2b).

In this case there are theoretical obstacles to the correct application of the Arrhe-
nius equation.

In the case of the linear heating program discussed earlier it can rightly be writ-
ten:

do(T) 4

7 =g P (—ERD(1- ()" (18)

since « is unambiguously dependent upon the temperature, which is a linear func-
tion of time. Therefore, the rate law can be described as a function of the tempera-
ture.

When recordings made by the quasi-isothermal-quasi-isobaric measuring
technique are used, if the process takes place at only one temperature point (7;),
Fig. 2a can be regarded as involving a function only of time, and thus:

d a(z)

5 = A " exp (—E/RT,) (l — OC(t))n (19)
where
¢ d a(r)
= constant.
de

However, when the temperature of the sample varies in time in the course of
measurement by the quasi-isothermal — quasi-isobaric technique, the Q-TG curve
resulting from the measurement shows that o is a linear function of time and an
unknown function of temperature. Accordingly, o = «{#, T (t)) and in this case one
must not consider correctly o as a function only of the time or only of the tempera-
ture. This is why the Arrhenius equation can not be interpreted in any of the simple
forms presented previously. Hence, when processes examined by the quasi-isother-
mal-quasi-isobaric measuring technique are taking place atvarying temperatures,
the Arrhenius equation must not be applied, at all, not even as a formal model and
consequently no reaction kinetic calculations may be performed with this equation.

The authors wish to thank Prof. E. Pungor for valuable remarks in this work.
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Appendix [ |

Simulation of TG curves

The Arrhenius equation, which forms the basis of the kinetic calculations, can be
integrated by separating the variables:

1 ]
dw 1—wt o _AE (e¥ Je‘“d _A-E )
w'  1-n G- R\ x u “I'=G- P

w X

wherew = (1 — «)
= E
" RT’

Several methods are known for the determination of p(x). An approximate for-
mula developed by Schlémlich (cited by Doyle [61]) has been applied here:
P =(x+2) 1 xt e if 10 < x < 80.

By simulation of the series of TG curves the single parameters were varied in the
following intervals:

n€[0.1;2.4] subject to E = 40.0, 4 = 10**
A €]10%; 10*] subject to E = 40.0,n = 1.05
E€[25;55] subjectto 4 = 10", n = 1.05

Thus, the obtained series of curves (Fig. 4) successively show the effects of varying
the apparent reaction order, the pre-exponential factor and the activation energy
upon the slope of the curve.

Appendix II

Correspondence between the TG curve and the coefficients of orthogonal
: polynomials

The TG curves are given by values of their functions at equidistant points, i.e. by
values o; ({ = 1,2, ... N). Thus, each TG curve is transformed to a point of the N-
dimensional Euclidean vector space (pre-Hilbert space). Let us fit all TG curves by
an orthogonal polynomial of m-th degree, given also by its values at N equidistant
points. (Simulation of polynomials is to be seen in Appendix II1.) Accordingly, the
polynomial, too, can be interpreted as a point of the N-dimensional pre-Hilbert
space.

If the fitted polynomial is in the near neighbourhood of the given TG curve,
then the fitting is good, and the coefficients of the fitting polynomial unambiguously
determine the TG curve. This statement is a consequence of the following theorems,
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Let us consider the above X pre-Hilbert space, which is known as linear and nor-
malized. Letbe £ €X, where fis the representation of some TG curves in pre-Hilbert

space. Let us regard all linear combinations Y, ¢;g; with elements g,. .. g, € X
i=0

and coefficients ¢, ... c,, where ¥ g; is a linearly independent element of X.
m

Y clg; is the transformation of some orthogonal polynomial.| Let us find the
i=0
m

Y lg; element for which:

i=0

m n
If= Z c?giH =¢=inf|[f— ) c.gi|l-
i=0 €o....Cm i=0
If there exists such an element, it is called the best approximate element.

Theorem. There exists a best approximate element.

Theorem. If space X is normalized, then only one single best approximate element
exists.

Theorem. The pre-Hilbert space is strictly normalized.

Relying on the above theorems, the following can be stated. The linear combina-
tion consisting of elements g, . . . g, best approximating the measured point f has
been found. From among these, for the best approximate element it is true that:

(f—Zcigilgk =0 (k=0,1...m).
L iSo J

As a best approximate element does exist, the above system of equations does
have a solution for ¢, . . . ¢, In contrast, let us suppose that another solution for
by. .. b, also} exists. However, because of the unicity of the best approximate
element it is valid that:

(NgH]

m
Cig; = _Zo b;g;.
i =

i=0

At the same time, the fact that ¢; # b; (for any j) is in contradiction with the
linear independence of elements g;.

Accordingly, the following can be stated.

When examining the TG curve in abstract space, it can unambiguously be approx-
imated within a given limit of error. Further, the unicity of the best approximate
curve, as well as that of the coefficients of the approximating system (which is a
linearly independent one) has been understood. Subsequently, if our examinations
are performed at fixed points and with a given independent system, it can be estab-
lished that one and only one TG curve belongs to the coefficient system of the ap-
proximating orthogonal polynomials.
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Appendix 11T

Simulation of the approximate independent orthogonal
polynomial system

The following three kinds of polynomials have been examined as approximate
orthogonal systems:

Tchebichef polynomials

Legendre polynomials

Gegenbauer polynomials

All three kinds of polynomials are, in fact, special cases of Jacobian polynomials
and satisfy the following assumptions.

Let us examine the closed interval [— 1, 4+ 1], and let the function p(x) = (1—x)*

(1 + x)# be positive almost everywhere in this interval and &« > —1, § > —1.

The polynomials P&#)(x) satisfying these conditions fulfil the following condi-
tion of orthogonality, too:

(PE0(x) | PAP(x)) = Kidy
where §; is the Kroenecker delta, for which

s [1iti=1
1 0 in other cases .

The Jacobian polynomials can be produced in explicit form either by the Rodrigues
formula or by the recursive method.

1
fao=p= > the Tchebichef second-order polynomials are obtained;

= f =0 theLegendre polynomials are obtained;
a=p=1 the Gegenbauer polynomials are obtained.

In the fitting algorithm the appropriate kind of orthogonal polynomial has been
produced by a general method described by Forsyte [62]. According to this,
{¢(x)}}Zocan be regarded as an orthogonal polynomial series with arbitrary weight
p(x), which fulfils the following condition of orthogonality:
N

3 i) 16 o) = 8,K,
where K is constant.
By total induction it can be proved that the orthogonal polynomial series con-

structed in this way complies with the next recursive relation:
$4100) = (x — ;1) ¢(x) — Bi; 1(%)
Po(x) = 15 d4(x)= 0

where o;,; and B; are dependent on the weight function and on the basic points
as well.
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Appendix IV
Short description of curve fitting

As can be seen in Appendix I, values of the TG curves recorded at points N (f;,
i =1, ...N)corresponding to the chosen parameter combinations have been pro-

duced.
As described in Appendix III, values (¢y(x;); i = 1,...N,j=0,...m) of the
single elements of the corresponding orthogonal system have similarly been pro-

duced.
With values produced in this way the fitting was carried out by the least squares

method according to the following formulae.
With the above polynomials the approximation will be:

Vul®) = 3 e

j=0
The weighted sum of squares

N
F(c§...cp) = l_zZl p)(fi — yumlx)?

is minimized by making its partial derivatives with respect to the coefficients zero.
Thus,

_z‘bdjlc}“ =q(=01...m)
I=

where
N
dj] = —21 P(xi)d)j(xi)¢1(xi)
N
qr = '21 p(x) “ fi - dilx)
As the series {¢(x)} is orthogonal,
djl = 5j1KI .
Thus:
Cl,n = &
! dy

The coeflicients ¢; obtained in this way are demonstrated as functions of £, 4 and
nin Figs5—7.
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REsuME — A partir de nombreuses expériences et réflexions théoriques, les auteurs avaient
démontré auparavant que ’allure des courbes TG non isothermes était fortement influencée
par les conditions d’expérience. Pour cette raison, la signification des parametres cinétiques
calculés & partir de ces courbes était fictive et leur détermination incertaine.

Dans le présent travail les auteurs discutent quelques autres problémes sur cette question.
En se servant de combinaisons de paramétres fortement différents on peut produire des courbes
TG presque identiques et cette situation ne peut pas &tre améliorée méme par transformation
polynomiale orthogonale. En outre, on a trouvé gu’a 'aide de méthodes par intégration et par
linéarisation, ’estimation des paramétres est mauvaise.

Le modéle transformé selon les conditions de la technique quasi isotherme — quasi isobare
entraine des contradictions qui indiquent, sans équivoque, les corrélations existant entre les
parameétres.

ZUSAMMENFASSUNG — Aufgrund zahlreicher Versuche und theoretischer Erwdgungen hatten
die Autoren frither gezeigt, daB der Verlauf nicht isothermer analytischer Kurven stark von
den Versuchsbedingungen beeinflult wird und deshalb die Bedeutung der aufgrund dieser
Kurven berechneten kinetischen Parameter fiktiv und ihre Bestimmung unsicher ist.

In der gegenwirtigen Arbeit werden einige weitere Probleme dieser Frage erortert. Die
Autoren fanden, daB mit Hilfe von Kombinationen stark verschiedener Parameter nahezu
identische TG-Kurven hergestellt werden konnen und daB dieser Tatsache selbst durch
orthogonale Polynomtransformation nicht abgeholfen werden kann. Weiter wurde gefunden,
daB mit Hilfe von Integralmethoden unter Anwendung von Linearisierung erhaltene Schitzun-
gen der Parameter ungenau sind.

Das den Bedingungen der quasi-isothermen— quasi-isobaren Technik entsprechend trans-
formierte Modell fithrt zu Widerspriichen, welche die zwischen den Parametern bestehenden
Bezichungen ecindeutig zeigen.

Peztome — Ha 0CHOBaHHM MHOTHMX KCIEPUMEHTAJIBHEIX M TEOPETHYECKUX Pa3MBIIUICHHH, ABTO-
DB paHee IIOKA3aIIH, YTO X0 HEM30TePMUYECKUX AHATHTHIECKAX KPHBEIX CHIILHO 3aTparinBaeTcs
3KCIEPUMERTANBHBIMA YCIOBHSMY U MO3TOMY CMBICT KHHETHYECKHX HaPAMETPOB, BHIYACICHHBIX
Ha OCHOBE 3THX KPHBBIX, ABJIsIETCS (GHKTHBHBIM U MX OIIpelelieHne COMHUTENBHO. B HacTOAIEM
cooOmern 00CYKIEHBL HEKOTOPHIE JajbHelne TpodieMsl 3TOT0 BOIpoca. ABTOpSI HAIILIM,
4TO C HOMOIIBIO KOMOMHAIME CHJILHO DPA3NMYAROLIAXCS MAPAMETPOB MOTYT OBITH IOIY4EHBL
HOYTH HAeHTHHHEIC KpuBeie 1T ¥ 3TO HONOXKEHHE HE MOXKET OBITH YNYUIICHO HAXKE IPH OpTO-
TOHAIBHOM MOJHHOMHOM Ipespaiienud. Janee, ObI0 HaiIEHO, YTO ¢ HOMOIIBLIO MHTETPAIbHBIX
METOZOB U TIPH HCIOIb30BaHMM JHHEHHOCTH, BHIUACICHUE HapaMeTpos 6enHoe. Mogens, npe-
06pa30BanHas COIJIACHO YCIOBUH KBA3UH30TEPMHMYECKOTO — KBA3MM300apHOTO METOAA IpH-
BOIOUT K NPOTHBODEYHMSM, HEIBYCMBICIIEHHO (OKA3biBasi KOPPESIIMHE, CYIIECTBYIOMIME MEXAY
napaMeTpaMu.
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